Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Improving model predictive control arithmetic robustness by Monte Carlo simulations : Implementation of Feedback Controllers

Identifieur interne : 000569 ( France/Analysis ); précédent : 000568; suivant : 000570

Improving model predictive control arithmetic robustness by Monte Carlo simulations : Implementation of Feedback Controllers

Auteurs : P. D. Vouzis [États-Unis] ; S. Collange [France] ; M. G. Arnold [États-Unis] ; M. V. Kothare [États-Unis]

Source :

RBID : Pascal:12-0437879

Descripteurs français

English descriptors

Abstract

Model predictive control (MPC) is an optimisation-based algorithm which usually requires a numerical method to calculate the solution of the problem. Inherently, numerical methods for optimisation problems are implemented on a finite-precision hardware platform and are subject to the appearance of numerical instabilities of catastrophic cancellation and ill-conditioned matrices. These anomalies are difficult to detect and overcome, and for safety-critical applications, it is essential to have a mechanism that can at least issue a warning when an arithmetic instability occurs. Towards this direction, Monte Carlo arithmetic (MCA) for the floating-point (FP) number system has been used for both detection and mitigation of catastrophic cancellation and ill-conditioned matrices. An alternative to FP is the Logarithmic Number System (LNS) that recently has been proposed for the real-time hardware implementation of embedded MPC. In this study the authors present the adaptation of MCA to LNS for detecting and mitigating catastrophic cancellation, forming the Monte Carlo Logarithmic Number System (MCLNS). An inherent drawback of MCA is the accuracy deterioration which is a direct consequence of the randomisation in the arithmetic operations. Additionally, multiple simulations of the system result in performance deterioration equal to the number of simulations. Using off-line simulations it is possible to determine the necessary hardware requirements to achieve desired accuracy under performance constraints. These trade-offs are studied and analysed for an MPC algorithm, and the hardware implementation cost of MCLNS is quantified by synthesis on a Xilinx Virtex-IV FPGA.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0437879

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Improving model predictive control arithmetic robustness by Monte Carlo simulations : Implementation of Feedback Controllers</title>
<author>
<name sortKey="Vouzis, P D" sort="Vouzis, P D" uniqKey="Vouzis P" first="P. D." last="Vouzis">P. D. Vouzis</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Carnegie Mellon University</s1>
<s2>Pittsburgh PA 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Pittsburgh</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Collange, S" sort="Collange, S" uniqKey="Collange S" first="S." last="Collange">S. Collange</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>LIP, École normale supérieure de Lyon, 46 allée d'Italie</s1>
<s2>69364 Lyon</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Lyon</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Arnold, M G" sort="Arnold, M G" uniqKey="Arnold M" first="M. G." last="Arnold">M. G. Arnold</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Computer Science and Engineering, Lehigh University</s1>
<s2>Bethlehem, PA18015</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Bethlehem, PA18015</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kothare, M V" sort="Kothare, M V" uniqKey="Kothare M" first="M. V." last="Kothare">M. V. Kothare</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Computer Science and Engineering, Lehigh University</s1>
<s2>Bethlehem, PA18015</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Bethlehem, PA18015</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0437879</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0437879 INIST</idno>
<idno type="RBID">Pascal:12-0437879</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">003398</idno>
<idno type="wicri:Area/PascalFrancis/Curation">001B32</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">003318</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">003318</idno>
<idno type="wicri:doubleKey">1751-8644:2012:Vouzis P:improving:model:predictive</idno>
<idno type="wicri:Area/Main/Merge">009604</idno>
<idno type="wicri:Area/Main/Curation">008F68</idno>
<idno type="wicri:Area/Main/Exploration">008F68</idno>
<idno type="wicri:Area/France/Extraction">000569</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Improving model predictive control arithmetic robustness by Monte Carlo simulations : Implementation of Feedback Controllers</title>
<author>
<name sortKey="Vouzis, P D" sort="Vouzis, P D" uniqKey="Vouzis P" first="P. D." last="Vouzis">P. D. Vouzis</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Carnegie Mellon University</s1>
<s2>Pittsburgh PA 15213</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Pittsburgh</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
<orgName type="university">Université Carnegie-Mellon</orgName>
</affiliation>
</author>
<author>
<name sortKey="Collange, S" sort="Collange, S" uniqKey="Collange S" first="S." last="Collange">S. Collange</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>LIP, École normale supérieure de Lyon, 46 allée d'Italie</s1>
<s2>69364 Lyon</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Lyon</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Arnold, M G" sort="Arnold, M G" uniqKey="Arnold M" first="M. G." last="Arnold">M. G. Arnold</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Computer Science and Engineering, Lehigh University</s1>
<s2>Bethlehem, PA18015</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Bethlehem, PA18015</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kothare, M V" sort="Kothare, M V" uniqKey="Kothare M" first="M. V." last="Kothare">M. V. Kothare</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Computer Science and Engineering, Lehigh University</s1>
<s2>Bethlehem, PA18015</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Bethlehem, PA18015</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IET control theory & applications : (Print)</title>
<idno type="ISSN">1751-8644</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IET control theory & applications : (Print)</title>
<idno type="ISSN">1751-8644</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anomaly</term>
<term>Arithmetic operation</term>
<term>Cancellation</term>
<term>Computer arithmetic</term>
<term>Field programmable gate array</term>
<term>Floating point arithmetic</term>
<term>Forming</term>
<term>Indirect method</term>
<term>Instability</term>
<term>Logarithmic function</term>
<term>Model predictive control</term>
<term>Modeling</term>
<term>Monte Carlo method</term>
<term>Numerical stability</term>
<term>Off line</term>
<term>Performance evaluation</term>
<term>Quantization</term>
<term>Randomization</term>
<term>Real time</term>
<term>Robustness</term>
<term>Safety critical software</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Commande MPC</term>
<term>Robustesse</term>
<term>Arithmétique ordinateur</term>
<term>Temps réel</term>
<term>Randomisation</term>
<term>Quantification</term>
<term>Annulation</term>
<term>Anomalie</term>
<term>Instabilité</term>
<term>Formage</term>
<term>Evaluation performance</term>
<term>Modélisation</term>
<term>Fonction logarithmique</term>
<term>Réseau porte programmable</term>
<term>Méthode Monte Carlo</term>
<term>Stabilité numérique</term>
<term>Opération arithmétique</term>
<term>Méthode indirecte</term>
<term>Hors ligne</term>
<term>.</term>
<term>Arithmétique virgule flottante</term>
<term>Logiciel à sécurité critique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Model predictive control (MPC) is an optimisation-based algorithm which usually requires a numerical method to calculate the solution of the problem. Inherently, numerical methods for optimisation problems are implemented on a finite-precision hardware platform and are subject to the appearance of numerical instabilities of catastrophic cancellation and ill-conditioned matrices. These anomalies are difficult to detect and overcome, and for safety-critical applications, it is essential to have a mechanism that can at least issue a warning when an arithmetic instability occurs. Towards this direction, Monte Carlo arithmetic (MCA) for the floating-point (FP) number system has been used for both detection and mitigation of catastrophic cancellation and ill-conditioned matrices. An alternative to FP is the Logarithmic Number System (LNS) that recently has been proposed for the real-time hardware implementation of embedded MPC. In this study the authors present the adaptation of MCA to LNS for detecting and mitigating catastrophic cancellation, forming the Monte Carlo Logarithmic Number System (MCLNS). An inherent drawback of MCA is the accuracy deterioration which is a direct consequence of the randomisation in the arithmetic operations. Additionally, multiple simulations of the system result in performance deterioration equal to the number of simulations. Using off-line simulations it is possible to determine the necessary hardware requirements to achieve desired accuracy under performance constraints. These trade-offs are studied and analysed for an MPC algorithm, and the hardware implementation cost of MCLNS is quantified by synthesis on a Xilinx Virtex-IV FPGA.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Pennsylvanie</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>Lyon</li>
<li>Pittsburgh</li>
</settlement>
<orgName>
<li>Université Carnegie-Mellon</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Vouzis, P D" sort="Vouzis, P D" uniqKey="Vouzis P" first="P. D." last="Vouzis">P. D. Vouzis</name>
</region>
<name sortKey="Arnold, M G" sort="Arnold, M G" uniqKey="Arnold M" first="M. G." last="Arnold">M. G. Arnold</name>
<name sortKey="Kothare, M V" sort="Kothare, M V" uniqKey="Kothare M" first="M. V." last="Kothare">M. V. Kothare</name>
</country>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Collange, S" sort="Collange, S" uniqKey="Collange S" first="S." last="Collange">S. Collange</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/France/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000569 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/France/Analysis/biblio.hfd -nk 000569 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    France
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:12-0437879
   |texte=   Improving model predictive control arithmetic robustness by Monte Carlo simulations : Implementation of Feedback Controllers
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021